Robert Zakar gives back to community
Kidney Disease Gene Also Has A Protective Mutation
image:
Lead author Adriana Hung, MD, MPH, associate professor of Medicine, Division of Nephrology at Vanderbilt University Medical Center, and principal investigator for the kidney disease grant for the Million Veteran Program from the Department of Veterans Affairs.
view moreCredit: Vanderbilt University Medical Center
African Americans have long been known to be at increased risk of kidney disease due to a dangerous genetic mutation that creates a hole in the kidney cells, but Vanderbilt University Medical Center (VUMC) researchers have now discovered a protective genetic mutation that covers the hole to eliminate the risk.
The findings on the apolipoprotein L1 (APOL1) gene, published today in the Journal of the American Society of Nephrology, could have immediate and broad implications for kidney health because people with both the disease-causing and protective mutation are not at increased risk.
"Our team discovered a different protective genetic mutation in APOL1 that counteracts the disease-causing mutation," said senior author Alexander Bick, MD, PhD, assistant professor of Medicine, Division of Genetic Medicine. "We performed experimental studies and found that the harmful mutation creates a hole in kidney cells. Our protective mutation blocks the hole.
"There are medicines in late-stage clinical development that block the APOL1 hole just like our protective mutation does. Our study shows that these targeted personalized medicine drugs are likely to be a successful treatment strategy. Our results also identify a set of patients with both the harmful and protective APOL1 mutation who would not need this treatment," he said.
The large human genomic study looked at of 150,582 participants with African ancestry from the Million Veteran Program (MVP), BioVU (VUMC's de-identified DNA databank) and the All of US Research Program, the NIH's historic effort to collect and study data from 1 million or more people living in the United States to accelerate health research.
"The results of our study have immediate and broad implications for kidney health," said lead author Adriana Hung, MD, MPH, associate professor of Medicine, Division of Nephrology, and principal investigator for the kidney disease grant for the Million Veteran Program from the Department of Veterans Affairs. "Individuals with African descent and Latinos have a four-fold increase in the risk of progressing to end stage renal failure, which is partially explained by of APOL1 G1/G2 high risk variants."
"Additionally, kidney donors with APOL1 high risk variants are also at an increased risk of kidney disease, hence reducing the pool of kidney donors. Interventions to decrease these long-standing inequities in kidney health have been desperately needed," she said.
The authors are now evaluating the role of APOL1 high risk variants in different settings to understand the overall population that will benefit from pharmacologic inhibitors that mimic the genetic mutation by blocking the APOL1 pore formation and ion channel conduction.
"Our study represents an important step forward in precision nephrology," Hung said. "It is an extraordinary example of how human genomics studies translated into the discovery of new treatments."
Other Vanderbilt collaborators who participated in the study include Hua-Chang Chen, Zhihong Yu, Jefferson L. Triozzi, Lee Wheless, Otis D. Wilson, Trevor K. Thompson, Michael E. Matheny, Edward D. Siew, Ran Tao, and Cassianne Robinson-Cohen. MAZE therapeutics helped with the functional assays.
Article Title
Genetic Inhibition of APOL1 Pore-Forming Function Prevents APOL1-Mediated Kidney Disease
Disclaimer: AAAS and EurekAlert! Are not responsible for the accuracy of news releases posted to EurekAlert! By contributing institutions or for the use of any information through the EurekAlert system.
A Mystery Disease Hit South Africa's Pine Trees 40 Years Ago: New DNA Technology Has Found The Killer
In the 1970s and 1980s, pine trees growing in various forestry plantations in South Africa's Western Cape province began to die in patches. These trees succumbed to a mysterious root disease and the patches expanded gradually. Spontaneous regrowth of seedlings in the patches died dramatically.
As in many other true crime dramas, the finger was initially pointed at the most likely suspect: the root-infecting Phytophthora cinnamomi. Its name – plant (phyto) destroyer (phthora) – reveals its power to cause harm; the pathogen is known to cause disease in almost 5,000 different plants.
After further investigation and the collection of many samples, tree pathologists shifted the blame onto the fungus Leptographium serpens (now known as Leptographium alacre). This fungus is well known to be transported by insects and was previously only known in Europe. It was visually identified from the roots of the dying trees. Now it was the prime suspect.
Doubts lingered, though. Most Leptographium species are not known to act as primary disease agents and so L. Serpens was most likely not able to cause the disease. Other fungi were also found within the roots of the diseased trees but could not be identified at the time due to a lack of more advanced techniques.
Knowing that the then-available technologies could not provide the complete answer to this mystery, the pathologists took more samples from the dead and dying pine trees, and stored them carefully. The hope was that one day they would have a better idea of the cause of this disease outbreak.
Fast forward to 2023 and a new character enters the mystery: DNA sequencing. This modern technology did what wasn't possible a few decades ago, allowing our team of molecular mycologists to identify the real culprit.
This tale is a testament to the ever-evolving nature of scientific inquiry. It reinforces the idea that, in the pursuit of knowledge, no stone should be left unturned and no assumption should be taken for granted. Through a blend of perseverance, technology, and a touch of serendipity, it was possible to solve a decades-old mystery.
Tracking a killerBack in the 1980s the samples were stored in the culture collection of the Forestry and Agricultural Biotechnology Institute at the University of Pretoria. In 2020, the samples were revived by a team that included ourselves and several others who recently published a paper on the topic.
We sequenced the samples' DNA to reveal their unique genetic code. By comparing this code against genetic databases, it was possible to figure out exactly what was causing the tree disease. And so, more than four decades after the disease was first described, the pathogen was finally identified as Rhizina undulata. L. Serpens, the long time primary suspect, was finally exonerated.
The culprit: Rhizina undulata Michael Wingfield, Author provided (no reuse)Rhizina undulata is well known to cause tree disease and death, mainly in Europe. This fungus is known colloquially as the "coffee fire fungus" because the intense heat caused by fires made by campers in a forest to brew coffee activates its dormant spores. This allows it to colonise the roots of conifers, including pines. R. Undulata is also well known in South Africa, where it kills many pines in the aftermath of forest fire and when trees are felled to clear a plantation.
What remains a mystery, however, is the trigger that activated this fungus in the Western Cape plantations. No fires were known to have occurred during the relevant time period.
One potential clue to the trigger may lie in the soil in which these trees were planted. Known as Table Mountain sandstone, this soil is sandy and acidic. Acidic soil has been shown in the laboratory to encourage R. Undulata growth. This naturally occurring acidity may have been the nudge the pathogen needed to infect the pine trees. It is also possible that the fungus was activated by heat radiating from the quartz rocks that are common in the areas in which the dying trees were planted.
It pays to be patientIn the years since the mysterious Western Cape outbreak, R. Undulata has become well known to foresters in pine plantations in other parts of South Africa and has done great damage to newly planted trees after fires. These fires can be accidental or due to what is known as slash-burning after trees are harvested.
Identifying R. Undulata as the culprit in those (no longer active) Western Cape plantations means scientists have more data that might help to better understand the biology of the fungus – which may lead to better control strategies in the future.
Our work is also a testament to the timeliness of scientific progress and the importance of patience. This story could only be fully unravelled when more advanced techniques were developed. It shows the power of modern technologies to solve historical problems. This underlines the need for continued investment into research and the development of new tools, both in South Africa and worldwide.
Our study also strongly advocates for the preservation of diverse fungal cultures for extended periods of time, regardless of their perceived importance at the time they are collected. The lack of accessible culture collections for lesser-known fungi, in South Africa and internationally, highlights the need for innovative approaches to safeguard these invaluable resources. This shift could revolutionise the study of microbes, opening new avenues beyond traditional species descriptions.
Vitamins By Condition
Considering taking supplements to treat wilson disease?Below is a list of common natural remedies used to treat or reduce the symptoms of wilson disease. Follow the links to read common uses, side effects, dosage details and user reviews for the vitamins and supplements listed below.
Treatment
Effectiveness
Reviews
Learn about User Reviews and read IMPORTANT information about user generated content
Conditions of Use and Important Information: This information is meant to supplement, not replace advice from your doctor or healthcare provider and is not meant to cover all possible uses, precautions, interactions or adverse effects. This information may not fit your specific health circumstances. Never delay or disregard seeking professional medical advice from your doctor or other qualified health care provider because of something you have read on WebMD. You should always speak with your doctor or health care professional before you start, stop, or change any prescribed part of your health care plan or treatment and to determine what course of therapy is right for you.
This copyrighted material is provided by Natural Medicines Comprehensive Database Consumer Version. Information from this source is evidence-based and objective, and without commercial influence. For professional medical information on natural medicines, see Natural Medicines Comprehensive Database Professional Version.
© Therapeutic Research Faculty 2018.
Comments
Post a Comment