Hemophilia B: Definition, Symptoms, Treatment, and More




mosaic genetic disorder :: Article Creator

Mechanisms And Consequences Of Somatic Mosaicism In Humans

Gottlieb, B., Beitel, L. K. & Trifiro, M. A. Somatic mosaicism and variable expressivity. Trends Genet. 17, 79–82 (2001).

Article  CAS  PubMed  Google Scholar 

Wallace, D. C. & Lott, M. In Principles and Practice of Medical Genetics 4th Edn (eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 299–409 (Churchill Livingstone, Edinburgh, 2002).

Google Scholar 

Hall, J. G. Twinning: mechanisms and genetic implications. Curr. Opin. Genet. Dev. 6, 343–347 (1996).

Article  CAS  PubMed  Google Scholar 

Boveri, T. The Origin of Malignant Tumors (Williams & Wilkins, Baltimore, Maryland, 1929).A timeless classic on somatic mutations and the pathogenesis of cancer.

Google Scholar 

Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. Genetics 148, 1483–1490 (1998).

CAS  PubMed  PubMed Central  Google Scholar 

Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

Article  CAS  PubMed  Google Scholar 

Hall, J. G. Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am. J. Hum. Genet. 43, 355–363 (1988).An excellent synthesis of observations from clinical genetics that relate to germinal and somatic mosaicism.

CAS  PubMed  PubMed Central  Google Scholar 

Youssoufian, H. Natural gene therapy and the Darwinian legacy. Nature Genet. 13, 255–256 (1996).

Article  CAS  PubMed  Google Scholar 

Hall, J. G. & Byers, P. H. Genetics of tuberous sclerosis. Lancet 1, 751 (1987).

Article  CAS  PubMed  Google Scholar 

Van Dijk, B. A., Boomsma, D. I. & De Man, A. J. M. Blood group chimerism in human multiple births is not rare. Am. J. Med. Genet. 61, 264–268 (1996).

Article  CAS  PubMed  Google Scholar 

Bianchi, D. W. & Lo, Y. M. Fetomaternal cellular and plasma DNA trafficking: the Yin and the Yang. Ann. NY Acad. Sci. 945, 119–131 (2001).

Article  CAS  PubMed  Google Scholar 

Quaini, F. Et al. Chimersim of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

Article  PubMed  Google Scholar 

Spangrude, G. J., Torok-Storb, B. & Little, M.-T. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 1410–1412 (2002).

Article  PubMed  Google Scholar 

Bianchi, D. W., Johnson, K. L. & Salem, D. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 1410–1411 (2002).

Article  PubMed  Google Scholar 

Glaser, R., Lu, M. M., Narula, N. & Epstein, J. A. Smooth muscle cells, but not myocytes, of host origin in transplanted hearts. Circulation 106, 17–19 (2002).

Article  PubMed  Google Scholar 

Ellis, N. A. Et al. Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am. J. Hum. Genet. 57, 1019–1027 (1995).A landmark study on the mechanisms of somatic reversion that facilitated the cloning of the gene that is defective in Bloom syndrome.

CAS  PubMed  PubMed Central  Google Scholar 

Kvittingen, E. A., Rootwelt, H., Berger, R. & Brandtzaeg, P. Self-induced correction of the genetic defect in tyrosinemia type I. J. Clin. Invest. 94, 1657–1661 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arredondo-Vega, F. X. Et al. Adenosine deaminase deficiency with mosaicism for a 'second-site suppressor' of a splicing mutation: decline in revertant T lymphocytes during enzyme replacement therapy. Blood 99, 1005–1013 (2002).

Article  CAS  PubMed  Google Scholar 

Gregory, J. J. Et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc. Natl Acad. Sci. USA 98, 2532–2537 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kazazian, H. H. Retrotransposon insertions in germ cells and somatic cells. Dev. Biol. 106, 307–313 (2001).

CAS  Google Scholar 

Whitelaw, E. & Martin, D. I. K. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nature Genet. 27, 361–365 (2001).

Article  CAS  PubMed  Google Scholar 

Poudrier, J., Lettre, F., Scriver, C. R., Larochelle, J. & Tanguay, R. M. Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol. Genet. Metab. 64, 119–125 (1998).

Article  CAS  PubMed  Google Scholar 

Kvittingen, E. A., Rootwelt, H., Brandtzaeg, P., Bergan, A. & Berger, R. Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect. J. Clin. Invest. 91, 1816–1821 (1993).One of the earliest and most complete descriptions of molecular reversion of an inherited mutation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, T. P. Et al. Spontaneous reversion of novel Lesch–Nyhan mutation by HPRT gene rearrangement. Somat. Cell Mol. Genet. 14, 293–303 (1988).

Article  CAS  PubMed  Google Scholar 

Has, C. Et al. The Conradi–Hunermann–Happle syndrome (CDPX2) and emopamil binding protein: novel mutations, and somatic and gonadal mosaicism. Hum. Mol. Genet. 9, 1951–1955 (2000).

Article  CAS  PubMed  Google Scholar 

Ferguson, H. L. Et al. Mosaicism in pseudoachondroplasia. Am. J. Med. Genet. 70, 287–291 (1997).

Article  CAS  PubMed  Google Scholar 

Montgomery, R. A. Et al. Multiple molecular mechanisms underlying subdiagnostic variants of Marfan syndrome. Am. J. Hum. Genet. 63, 1703–1711 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burrow, K. L. Et al. Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy. Neurology 41, 661–668 (1991).

Article  CAS  PubMed  Google Scholar 

Smith, T. A. Et al. Identification and quantification of somatic mosaicism for a point mutation in a Duchenne muscular dystrophy family. J. Med. Genet. 36, 313–315 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Costa, J.-M. Et al. Somatic mosaicism and compound heterozygosity in female hemophilia B. Blood 96, 1585–1587 (2000).

CAS  PubMed  Google Scholar 

Leuer, M. Et al. Somatic mosaicism in hemophilia A: a fairly common event. Am. J. Hum. Genet. 69, 75–87 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ainsworth, P. J. Et al. Example of somatic mosaicism in a series of de novo neurofibromatosis type 1 cases due to a maternally derived deletion. Hum. Mutat. 9, 452–457 (1997).

Article  CAS  PubMed  Google Scholar 

Sippel, K. C. Et al. Frequency of somatic and germline mosaicism in retinoblastoma: implications for genetic counseling. Am. J. Hum. Genet. 62, 610–619 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans, D. G. R. Et al. Somatic mosaicism: a common cause of classic disease in tumor-prone syndromes? Lessons from type 2 neurofibromatosis. Am. J. Hum. Genet. 63, 727–736 (1998).

CAS  PubMed  PubMed Central  Google Scholar 

Verhoef, S. Et al. High rate of mosaicism in tuberous sclerosis complex. Am. J. Hum. Genet. 64, 1632–1637 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murgia, A. Et al. Somatic mosaicism in von Hippel–Lindau disease. Hum. Mutat. 15, 114 (2000).

Article  CAS  PubMed  Google Scholar 

German, J. & Ellis, N. A. In The Metabolic and Molecular Bases of Inherited Disease 8th Edn (eds Scriver, C., Beaudet, A. L., Sly, W. S. & Valle, D.) 733–752 (McGraw–Hill, New York, 2001).

Google Scholar 

Ellis, N. A. Et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

Article  CAS  PubMed  Google Scholar 

German, J., Ellis, N. A. & Proytcheva, M. Bloom's syndrome. XIX. Cytogenetic and population evidence for genetic heterogeneity. Clin. Genet. 49, 223–231 (1996).

Article  CAS  PubMed  Google Scholar 

Ellis, N. A., Ciocci, S. & German, J. Back mutation can produce phenotype reversion in Bloom syndrome somatic cells. Hum. Genet. 108, 167–173 (2001).

Article  CAS  PubMed  Google Scholar 

Auerbach, A. D., Buchwald, M. & Joenje, H. In Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 317–332 (McGraw–Hill, New York, 1998).

Google Scholar 

Cumming, R. C. Et al. Redox regulation of GSTP1 by the Fanconi anemia group C protein prevents apoptosis in hematopoietic cells. Nature Med. 7, 814–820 (2001).

Article  CAS  PubMed  Google Scholar 

Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of Fanconi anaemia. Nature Rev. Genet. 2, 446–457 (2001).

Article  CAS  PubMed  Google Scholar 

Kwee, M. L. Et al. Unusual response to bifunctional alkylating agents in a case of Fanconi anaemia. Hum. Genet. 64, 384–387 (1983).

Article  CAS  PubMed  Google Scholar 

Auerbach, A. D. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp. Hematol. 21, 731–733 (1993).

CAS  PubMed  Google Scholar 

Lo Ten Foe, J. R. Et al. Somatic mosaicism in Fanconi anemia: molecular basis and clinical significance. Eur. J. Hum. Genet. 5, 137–148 (1997).

CAS  PubMed  Google Scholar 

Waisfisz, Q. Et al. Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nature Genet. 22, 379–383 (1999).

Article  CAS  PubMed  Google Scholar 

Timmers, C. Et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell 7, 241–248 (2001).

Article  CAS  PubMed  Google Scholar 

Machin, G. A. Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. Am. J. Med. Genet. 61, 216–228 (1996).

Article  CAS  PubMed  Google Scholar 

Dipple, K. M. & McCabe, R. B. Phenotypes of patients with 'simple' Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66, 1729–1735 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vijg, J. Somatic mutations and aging: a re-evaluation. Mutat. Res. 447, 117–135 (2000).

Article  CAS  PubMed  Google Scholar 

Bernards, A. & Gusella, J. F. The importance of genetic mosaicism in human disease. N. Engl. J. Med. 331, 1447–1449 (1994).

Article  CAS  PubMed  Google Scholar 

Cavenee, W. K. Et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

Article  CAS  PubMed  Google Scholar 

Lasko, D., Cavenee, W. & Nordenskjold, M. Loss of constitutional heterozygosity in human cancer. Annu. Rev. Genet. 25, 281–314 (1991).

Article  CAS  PubMed  Google Scholar 

Gupta, P. K. Et al. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination in normal T lymphocytes of human APRT heterozygotes. Cancer Res. 57, 1188–1193 (1997).

CAS  PubMed  Google Scholar 

De Nooij-Van Dalen, A. G., Morolli, B., van der Marel, A., Lohman, P. H. & Giphart-Gassler, M. Intrinsic genetic instability of normal human lymphocytes and its implication for loss of heterozygosity. Genes Chromosom. Cancer 30, 323–335 (2001).

Article  CAS  PubMed  Google Scholar 

Tobais, E. S. & Black, D. M. In Principles and Practice of Medical Genetics 4th edn (Eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 514–570 (Churchill Livingstone, Edinburgh, 2002).

Google Scholar 

Aaltonen, L. A. Et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

Article  CAS  PubMed  Google Scholar 

Kane, M. F. Et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 4749–4756 (1997).

Google Scholar 

Wong, L.-J. C., Wong, H. & Liu, A. Intergenerational transmission of pathogenic heteroplasmic mitochondrial DNA. Genet. Med. 4, 78–83 (2002).

Article  PubMed  Google Scholar 

Orstavik, R. E., Tommerup, N., Eiklid, K. & Orstavik, K. H. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Weidemann–Beckwith syndrome. Am. J. Med. Genet. 56, 210–214 (1995).

Article  CAS  PubMed  Google Scholar 

Trejo, V., Derom, C., Vlietinck, R. & Ollier, W. X-chromosome inactivation patterns correspond with fetal–placental anatomy in monozygotic twin pairs: implications for immune relatedness and concordance for autoimmunity. Mol. Med. 1, 62–70 (1995).

Article  Google Scholar 

Bailey, W., Popovich, B. & Jones, K. L. Monozygotic twins discordant for the Russell–Silver syndrome. Am. J. Med. Genet. 58, 101–105 (1995).

Article  CAS  PubMed  Google Scholar 

Kotzot, D. Et al. Uniparental disomy 7 in Silver–Russell syndrome and primordial growth retardation. Hum. Mol. Genet. 4, 583–587 (1995).

Article  CAS  PubMed  Google Scholar 

Steinmetz, H., Herzog, A., Huang, Y. & Hacklander, T. Discordant brain-surface anatomy in monozygotic twins. N. Engl. J. Med. 331, 952–953 (1994).

Article  CAS  PubMed  Google Scholar 

Wolf, H. M. Et al. Twin boys with major histocompatibility complex class II deficiency but inducible immune responses. N. Engl. J. Med. 332, 86–90 (1995).

Article  CAS  PubMed  Google Scholar 

Berger, R. & Jonveaux, P. Clonal chromosome abnormalities in Fanconi anemia. Hematol. Cell. Ther. 38, 291–296 (1996).

Article  CAS  PubMed  Google Scholar 

Alter, B. P. Et al. Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet. Cytogenet. 117, 125–131 (2000).

Article  CAS  PubMed  Google Scholar 

Wallerstein, R. Et al. Common trisomy mosaicism diagnosed in amniocytes involving chromosomes 13, 18, 20 and 21: karyotype–phenotype correlations. Prenat. Diagn. 20, 103–122 (2000).

Article  CAS  PubMed  Google Scholar 

Tomie, J. L. In Principles and Practice of Medical Genetics 4th edn (Eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 1129–1182 (Churchill Livingstone, Edinburgh, 2002).

Google Scholar 

Bamforth, J. S. & Lin, C. C. DK phocomelia phenotype (von Voss–Cherstvoy syndrome) caused by somatic mosaicism for del (13q). Am. J. Med. Genet. 74, 408–411 (1997).An excellent illustration of how phenotypic information that is obtained from clinical genetics can be exploited to identify somatic mosaicism.

Article  Google Scholar 

Schinzel, A. Tetrasomy 12p (Pallister–Killian syndrome). J. Med. Genet. 28, 122–125 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tolmie, J. L. In Principles and Practice of Medical Genetics 4th Edn (eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 1129–1183 (Churchill Livingstone, Edinburgh, 2002).

Google Scholar 

Zaragoza, M. Et al. Nondisjunction of human acrocentric chromosomes. Studies of 432 fetuses and liveborns. Hum. Genet. 94, 411–417 (1994).

Article  CAS  PubMed  Google Scholar 

Allanson, J. E. & Graham, G. E. In Principles and Practice of Medical Genetics 4th Edn (eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 1184–1201 (Churchill Livingstone, Edinburgh, 2002).

Google Scholar 

Robinson, W. P. Molecular studies of chromosomal mosaicism: relative frequency of chromosome gain or loss and possible role of cell selection. Am. J. Hum. Genet. 56, 444–451 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Karadima, G. Et al. Origins of nondisjunction in trisomy 8 and trisomy 8 mosaicism. Eur. J. Hum. Genet. 6, 432–438 (1998).

Article  CAS  PubMed  Google Scholar 

Sparkes, R. Et al. The validation of a 7-locus multiplex STR test for use in forensic casework. I. Mixtures, ageing, degradation and species studies. Int. J. Legal Med. 109, 186–194 (1996).

Article  CAS  PubMed  Google Scholar 

Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA 97, 7521–7526 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arredondo-Vega, F. X. Et al. Correct splicing despite mutation of the invariant first nucleotide of a 5′ splice site: a possible basis for disparate clinical phenotypes in siblings with adenosine deaminase deficiency. Am. J. Hum. Genet. 54, 820–830 (1994).

CAS  PubMed  PubMed Central  Google Scholar 

Hirschhorn, R. Et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nature Genet. 13, 290–295 (1996).

Article  CAS  PubMed  Google Scholar 

Wada, T. Et al. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc. Natl Acad. Sci. USA 98, 8697–8702 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stephan, V. Et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N. Engl. J. Med. 335, 1563–1567 (1996).

Article  CAS  PubMed  Google Scholar 

Joseph, J. T. Et al. Congenital myotonic dystrophy pathology and somatic mosaicism. Neurology 49, 1457–1460 (1997).

Article  CAS  PubMed  Google Scholar 

Van der Maarel, S. M. Et al. De novo fascioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am. J. Hum. Genet. 66, 26–35 (2000).

Article  CAS  PubMed  Google Scholar 

Jonkman, M. F. Et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88, 543–551 (1997).

Article  CAS  PubMed  Google Scholar 

Itin, P. H., Buchner, S. A. & Happle, R. Segmental manifestations of Darier disease. What is the genetic background in type 1 and type 2 mosaic phenotypes? Dermatology 200, 254–257 (2000).

Article  CAS  PubMed  Google Scholar 

Nomura, K., Umeki, K., Hatayama, I. & Kuronuma, T. Phenotypic heterogeneity in bullous congenital ichthyosiform erythroderma: possible somatic mosaicism for keratin gene mutation in the mildly affected mother of the proband. Arch. Dermatol. 137, 1192–1195 (2001).

Article  CAS  PubMed  Google Scholar 

The International IP Consortium. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am. J. Hum. Genet. 69, 1210–1217 (2001).This study illustrates the unmasking of lethal genetic mutations in the somatic mosaic state.

Holterhus, P. M. Et al. Clinical and molecular spectrum of somatic mosaicism in androgen insensitivity syndrome. Eur. J. Pediatr. 158, 702–706 (1999).

Article  CAS  PubMed  Google Scholar 

Liehr, T. Et al. Mosaicism for the Charcot–Marie–Tooth disease type 1A duplication suggests somatic reversion. Hum. Genet. 98, 22–28 (1996).

Article  CAS  PubMed  Google Scholar 

Klopstock, T. Et al. Markedly different course of Friedreich's ataxia in sib pairs with similar GAA repeat expansions in the frataxin gene. Acta Neuropathol. 97, 139–142 (1999).

Article  CAS  PubMed  Google Scholar 

Gleeson, G. L. Et al. Somatic and germline mosaic mutations in the doublecortin gene are associated with variable phenotypes. Am. J. Hum. Genet. 67, 574–581 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armstrong, J., Pineda, M., Aibar, E., Gean, E. & Monros, E. Classic Rett syndrome in a boy as a result of somatic mosaicism for a MECP2 mutation. Ann. Neurol. 50, 692 (2001).

Article  CAS  PubMed  Google Scholar 

Hashida, H. Et al. Single cell analysis of CAG repeat in brains of dentatorubral–pallidoluysian atrophy (DRPLA). J. Neurol. Sci. 190, 87–93 (2001).

Article  CAS  PubMed  Google Scholar 

Kato, M. Et al. Mutation of the doublecortin gene in male patients with double cortex syndrome: somatic mosaicism detected by hair root analysis. Ann. Neurol. 50, 547–551 (2001).

Article  CAS  PubMed  Google Scholar 

Darling, T. N., Yee, C., Bauer, J. W., Hintner, H. & Yancey, K. B. Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation. J. Clin. Invest. 103, 1371–1377 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheuerle, A. E. Male cases of incontinentia pigmenti: case report and review. Am. J. Med. Genet. 77, 201–218 (1998).

Article  CAS  PubMed  Google Scholar 

Parrish, J. E., Scheuerle, A. E., Lewis, R. A., Levy, M. L. & Nelson, D. L. Selection against mutant alleles in blood leukocytes is a consistent feature in incontinentia pigmenti type 2. Hum. Mol. Genet. 5, 1777–1783 (1996).

Article  CAS  PubMed  Google Scholar 

Rudolph, D. Et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

CAS  PubMed  PubMed Central  Google Scholar 

Happle, R. The McCune–Albright syndrome: a lethal gene surviving by mosaicism. Clin. Genet. 29, 321–324 (1986).

Article  CAS  PubMed  Google Scholar 

Weinstein, L. S. Et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

Article  CAS  PubMed  Google Scholar 

Aldred, M. A. & Trembath, R. C. Activating and inactivating mutations in the human GNAS1 gene. Hum. Mutat. 16, 183–189 (2000).

Article  CAS  PubMed  Google Scholar 

Bianco, P. Et al. Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsα-mutated skeletal progenitor cells. J. Clin. Invest. 101, 1737–1744 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, M. M. Jr. Proteus syndrome: clinical evidence for somatic mosaicism and selective review. Am. J. Med. Genet. 47, 645–652 (1993).

Article  PubMed  Google Scholar 

Biesecker, L. G. The multifaceted challenges of Proteus syndrome. JAMA 285, 2240–2243 (2001).

Article  CAS  PubMed  Google Scholar 

Stern, C. Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625–730 (1936).

CAS  PubMed  PubMed Central  Google Scholar 

Harrison, B. J. & Carpenter. R. Somatic crossing-over in Antirrhinum majus. Heredity 38, 169–189 (1977).

Article  Google Scholar 

Lupski, J. R., Roth, J. R. & Weinstock, G. M. Chromosomal duplications in bacteria, fruit flies, and humans. Am. J. Hum. Genet. 58, 21–27 (1996).

CAS  PubMed  PubMed Central  Google Scholar 

Van Sloun, P. P. H. Et al. Determination of spontaneous loss of heterozygosity mutation in Aprt heterozygous mice. Nucleic Acids Res. 26, 4888–4894 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao, C. Et al. Mitotic recombination produces the majority of the recessive fibroblast variants in heterozygous mice. Proc. Natl Acad. Sci. USA 96, 9230–9235 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, L., Deng, L., Shao, C., Stambrook, P. J. & Tischfield, J. A. In vivo loss of heterozygosity in T cells of B6C3F1 Aprt+/− mice. Environ. Mol. Mutagen. 35, 150–157 (2000).

Article  CAS  PubMed  Google Scholar 

Shao, C., Stambrook, P. J. & Tischfield, J. A. Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains. Nature Genet. 28, 169–172 (2001).An important mechanistic study on somatic mitotic recombination and its implications for tumorigenesis.

Article  CAS  PubMed  Google Scholar 

Vrieling, H. Mitotic maneuvers in the light. Nature Genet. 28, 101–102 (2001).

Article  CAS  PubMed  Google Scholar 

Johnson, R. D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

Article  CAS  PubMed  Google Scholar 

Luo, G. Et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genet. 26, 424–429 (2000).

Article  CAS  PubMed  Google Scholar 

Wu, L. & Hickson, I. D. RecQ helicases and topoisomerases: components of a conserved complex for the regulation of genetic recombination. Cell Mol. Life Sci. 58, 894–901 (2001).

Article  CAS  PubMed  Google Scholar 

De Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321–330 (1995).

Article  CAS  PubMed  Google Scholar 

Shen, P. & Huang, H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112, 441–457 (1986).

CAS  PubMed  PubMed Central  Google Scholar 

Rayssiguier, C., Thaler, D. S. & Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342, 396–401 (1989).Important mechanistic study of recombination that revealed a role for mismatch repair in prokaryotes.

Article  CAS  PubMed  Google Scholar 

Datta, A., Hendrix, M., Lipsitch, M. & Jinks-Robertson, S. Dual role for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc. Natl Acad. Sci. USA 94, 9757–9762 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, W. & Jinks-Robertson, S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 151, 1299–1313 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Waldman, A. S. & Liskay, R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8, 5350–5357 (1988).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. MSH2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease and transgenic mice. Nature Genet. 23, 471–473 (1999).

Article  CAS  PubMed  Google Scholar 

Kovtun, I. V. & McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27, 407–411 (2001).

Article  CAS  PubMed  Google Scholar 

Battaile, K. P. Et al. In vivo selection of wild-type hematopoietic stem cells in a murine model of Fanconi anemia. Blood 94, 2151–2158 (1999).

CAS  PubMed  Google Scholar 

Haneline, L. S. Et al. Loss of FancC function results in decreased hematopoietic stem cell repopulating ability. Blood 94, 1–8 (1999).

CAS  PubMed  Google Scholar 

Soriano, P. & Jaenisch, R. Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell lineages. Cell 46, 19–29 (1986).

Article  CAS  PubMed  Google Scholar 

Cohn, D. H., Starman, B. J., Blumberg, B. & Byers, P. H. Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1). Am. J. Hum. Genet. 46, 591–601 (1990).An excellent study that combines clinical observation and molecular analysis, and that quantifies the embryonic cellular contribution to the emerging somatic-cell lineages.

CAS  PubMed  PubMed Central  Google Scholar 

Wiemels, J. L. Et al. In utero origin of t(8;21) AML1–ETO translocations in childhood acute myeloid leukemia. Blood 99, 3801–3805 (2002).

Article  CAS  PubMed  Google Scholar 

Flannery, D. B. In Human Malformations and Related Anomalies, Vol. II. Oxford Monographs on Medical Genetics (eds Stevenson, R. E., Hall, J. G. & Goodman, R. M.) 907–930 (Oxford Univ. Press, New York, 1993).

Google Scholar 


Researchers Identify The Variants Responsible For A Rare And Serious Disorder

Many disorders are caused by genetic variants; to make matters worse, the genetic origin of most disorders remains unknown. Now, in a study recently published in the Journal of Clinical Immunology, researchers have shed light on the specific variants responsible for one rare and serious disorder: "RAD50 deficiency/Nijmegen breakage syndrome-like disorder."

Together with MRE11 and NBN, RAD50 is one of three proteins that make up the "MRN complex," which detects breaks in DNA and helps to initiate DNA repair. Because each of the three proteins is encoded by a separate gene, variants in any of the three genes can lead to altered functioning of the MRN complex. However, although MRE11 and NBN gene variants are known to cause other disorders, ataxia telangiectasia-like disorder and Nijmegen breakage syndrome, respectively, the pathological effects of RAD50 gene variants have remained somewhat unclear—until now.

"When we looked at the literature, we realized that only three cases of RAD50 deficiency, which leads to symptoms similar to those of Nijmegen breakage syndrome, had been reported," explains Masatoshi Takagi, lead author of the study. "Of these three, just one was reported to have RAD50 variants, with associated bone marrow failure and immunodeficiency."

When the research team came across a patient with progressive bone marrow failure and immunodeficiency combined with Nijmegen breakage syndrome-like manifestations, they decided to perform whole-exome sequencing to see if they could identify any gene variants that might lead to the observed symptoms.

"We found two different RAD50 variants in our patient, each of which was inherited from one of her parents," states Takagi. "We then tested the functional effects of these combined variants using fibroblast cells from the patient, which we grew in the lab."

The functional experiments suggested that the patient's RAD50 variants led to a loss of function of the RAD50 protein and, thus of the MRN complex. They also resulted in slower cell replication (i.E., mitosis), as expected. Interestingly, however, these variants did not cause hypersensitivity to radiation, unlike other known RAD50 variants.

"Together, the findings from our case and the three previously reported cases suggest that RAD50 deficiency/Nijmegen breakage syndrome-like disorder is characterized by growth retardation and microcephaly, which may coexist with bone marrow failure and immunodeficiency in some patients," says senior author of the study Hirokazu Kanegane. "This disorder may therefore increase susceptibility to infectious diseases and immune-related conditions."

Given the rarity of this disorder and our lack of knowledge about its genetic causes, the findings from this case are important. A better understanding of RAD50 and its effects on immunity can lead to improved diagnosis and treatment of patients with RAD50 deficiency.

More information: Masatoshi Takagi et al, Bone Marrow Failure and Immunodeficiency Associated with Human RAD50 Variants, Journal of Clinical Immunology (2023). DOI: 10.1007/s10875-023-01591-8

Citation: Researchers identify the variants responsible for a rare and serious disorder (2023, November 15) retrieved 24 November 2023 from https://medicalxpress.Com/news/2023-11-variants-responsible-rare-disorder.Html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.


Are Personality Disorders Genetic? Causes And More

The exact cause of personality disorders is unclear. However, genetics, neurological differences, and environmental factors may contribute to the development of these complex mental health conditions.

Personality disorders are a class of mental health conditions marked by certain patterns of behavior, thinking, and mood. People who have personality disorders may experience distorted perceptions of reality and unusual emotional responses, which may cause distress in multiple areas of their lives.

These disorders can significantly affect a person's social functioning, relationships, and overall well-being. Both genetic and environmental factors play a role in the development of personality disorders. However, the exact relationship between genetics and these conditions is a subject of ongoing research.

In this article, we will look at whether personality disorders are genetic, as well as the causes, risk factors, disorder types, and treatments.

Personality disorders result from a combination of genetic and environmental factors. The relationship between genetics and these conditions is complex and multifaceted.

Twin studies suggest that the heritability of borderline personality disorder accounts for around 50% of a person's risk of developing it. This means that genes play a large role in whether a person develops the condition. Twin studies have also found that the heritability rate for schizoid personality disorder is 30%.

But genetics are not the only cause of personality disorders. Instead, genetics interact with environmental factors to increase or decrease the risk. Some people who have no known family history of personality disorders still develop them, and some people who have a genetic tendency toward personality disorders never develop one.

Learn more about personality disorders.

Doctors do not know the exact cause of personality disorders, but genetics may be a factor. Health experts believe that a combination of life experiences — particularly adverse childhood experiences — contributes to personality disorder development.

According to a 2016 survey of more than 1 million adults in China, people with personality disorders are more likely to be younger, unmarried, and male and to have lower socioeconomic status. These results suggest an environmental influence on the cause of these disorders.

Men are 3–5 times more likely than women to receive a diagnosis of an antisocial personality disorder, whereas borderline and histrionic personality disorders are more common in women. This indicates that genetics may play a role.

Further research is necessary to better understand the causes of personality disorders.

Understanding the risk factors associated with personality disorders is essential for recognizing and preventing these conditions. Research suggests links between genetic, social, and environmental factors, although further studies are necessary to learn more.

Risk factors for developing personality disorders include:

  • Family history: Having a family history of personality disorders may increase a person's risk of developing one.
  • Environmental factors: Borderline and antisocial personality disorders may be co-related with childhood trauma such as abuse, neglect, or an unstable environment.
  • Social factors: The varying prevalence of personality disorders in different countries d
  • Comments

    Popular posts from this blog

    Well-liked Medicare plan vs. higher-ranked providers - ChicagoNow

    Minnesota veterans blame 3M's 'defective' ear plugs for hearing damage - KSTP

    Sickle Cell Disease (SCD): Practice Essentials, Background, Genetics