A familial case of MYH9 gene mutation associated with multiple functional and structural platelet abnormalities ...




types of numerical chromosomal aberrations :: Article Creator

Biological Dosimetry: Chromosomal Aberration Analysis For Dose Assessment

Cite this content as:

INTERNATIONAL ATOMIC ENERGY AGENCY, Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment, Technical Reports Series No. 260, IAEA, Vienna (1986)

Download to:EndNote BibTeX*use BibTeX for Zotero


Chromosomal Aberrations Play A Major Role In Autism

A study, resulting from genome-wide scans of families affected with by autism spectrum disorder (ASD), has shown that previously unknown chromosomal aberrations have an important role to play in the ubiquitous disorder. The researchers have said that structural variations in chromosomes influence ASD and they suggest a routine clinical workup. This report is published online on the 17th January in the American Journal of Human Genetics, a publication of Cell Press. "Historical studies in identical twins and their families have provided strong evidence for a genetic basis of autism," said Stephen Scherer of The Hospital for Sick Children and the University of Toronto. "Last year, with the Autism Genome Project Consortium, we did an initial study to look at the rate of chromosomal changes in autism. Now, we've really pinned down those numbers."

Autism is a complex developmental disorder found in about one in every 165 children, making it one of the most common forms of developmental disability of childhood. Individuals with ASD have deficits in social interaction and communication and show a preference for repetitive, stereotyped activities. Structural changes, including gains and losses of genes as well as chromosomal translocations (in which a chromosomal segment ends up in the wrong place) or inversions (in which a portion of the genome is oriented backwards) have been previously identified in some individuals with ASD, but their causal role hasn't been clear.

In the new study, the researchers examined structural abnormalities in 427 unrelated ASD cases using both microarray analysis and karyotyping. Microarrays can detect "unbalanced" genetic changes that alter the number of copies of a particular gene. Karyotyping, in which chromosomes are viewed under the microscope, can identify "balanced" translocations or inversions that might otherwise be missed by microarrays.

While most chromosomal abnormalities were inherited, the researchers found that seven percent of children with autism carry structural changes in the genome that are not found in their parents. The rate of such de novo changes in the general population is typically less than one percent, Scherer said.

The researchers detected 13 regions of the genome with overlapping or recurrent chromosomal changes in unrelated people with autism, suggesting that genes located at these sites may cause or add to the complexity of the condition. The most prevalent change, occurring in one percent of ASD cases, was found on chromosome 16, they reported. The altered portion of chromosome 16 has structural characteristics that make it more prone to errors, Scherer noted.

In a subset of ASD cases, the researchers found abnormalities in several genes known to be involved in neuron function. They also identified at least two sites that have previously been linked to mental retardation.

Advertisement

"Our understanding of the full etiologic role of structural variation in ASD will require genomic and phenotypic analyses of more cases (and their families) and population controls," the researchers concluded. As a first step toward achieving the desired numbers, the researchers have established a new Autism Chromosome Rearrangement Database, which allows integration of their new data and all other molecular information with the wealth of karyotypic data gathered over the years.

In light of the new findings, Scherer's team also calls for new testing in the clinic.

Advertisement

"From our current data it is already apparent that for a proportion of individuals, it will be possible to describe their ASD based on the underlying structural characteristics of their genome," they wrote.

"If we found certain changes, we could then watch those children closer," Scherer added, noting the critical importance of early diagnosis for autism.

Source-EurekalertLIN/S


The Anaplastic Lymphoma Kinase In The Pathogenesis Of Cancer

Jaffe, E. S., Harris, N. L., Stein, H. & Vardiman, J. W. World Health Organization Classification of Tumors: Tumors of the Haematopoietic and Lymphoid Tissues (International Agency for Research on Cancer, Lyon, 2001).

Google Scholar 

Stein, H. Et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed–Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66, 848–858 (1985).

CAS  PubMed  Google Scholar 

Stein, H. Et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96, 3681–3695 (2000).

CAS  PubMed  Google Scholar 

Sandlund, J. T. Et al. Clinical features and treatment outcome for children with CD30+ large-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 12, 895–898 (1994).

Article  CAS  PubMed  Google Scholar 

Kadin, M. E. & Morris, S. W. The t(2;5) in human lymphomas. Leuk. Lymphoma 29, 249–256 (1998).

Article  CAS  PubMed  Google Scholar 

Rizvi, M. A., Evens, A. M., Tallman, M. S., Nelson, B. P. & Rosen, S. T. T-cell non-Hodgkin lymphoma. Blood 107, 1255–1264 (2006).

Article  CAS  PubMed  Google Scholar 

Savage, K. S. Peripheral T-cell lymphomas. Blood Rev. 4, 201–216 (2007).

Article  CAS  Google Scholar 

Fischer, P. Et al. A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a high-grade non-Hodgkin's lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor β-chain gene. Blood 72, 234–240 (1988).

CAS  PubMed  Google Scholar 

Benz-Lemoine, E. Et al. Malignant histiocytosis: a specific t(2;5)(p23;q35) translocation? Review of the literature. Blood 72, 1045–1047 (1988).

CAS  PubMed  Google Scholar 

Mason, D. Y. Et al. CD30-positive large cell lymphomas ('Ki-1 lymphoma') are associated with a chromosomal translocation involving 5q35. Br. J. Haematol. 74, 161–168 (1990).

Article  CAS  PubMed  Google Scholar 

Morris, S. W. Et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994). This is the first paper to describe the cloning of the ALK gene in the chromosomal breakpoints that are associated with the balanced t(2;5)(p23;q35) chromosomal translocation in ALCL.

Article  CAS  PubMed  Google Scholar 

Medeiros, L. J. & Elenitoba-Johnson, K. S. Anaplastic large cell lymphoma. Am. J. Clin. Pathol. 127, 707–722 (2007).

Article  PubMed  Google Scholar 

Benharroch, D. Et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 91, 2076–2084 (1998).

CAS  PubMed  Google Scholar 

Ladanyi, M. & Cavalchire, G. Molecular variant of the NPM–ALK rearrangement of Ki-1 lymphoma involving a cryptic ALK splice site. Genes Chromosomes Cancer 15, 173–177 (1996).

Article  CAS  PubMed  Google Scholar 

Chan, P. K. & Chan, F. Y. Nucleophosmin/B23 (NPM) oligomer is a major and stable entity in HeLa cells. Biochim. Biophys. Acta 1262, 37–42 (1995).

Article  PubMed  Google Scholar 

Liu, Q. R. & Chan, P. K. Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein. Eur. J. Biochem. 200, 715–721 (1991).

Article  CAS  PubMed  Google Scholar 

Bischof, D., Pulford, K., Mason, D. Y. & Morris, S. W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell Biol. 17, 2312–2325 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grisendi, S., Mecucci, C., Falini, B. & Pandolfi, P. P. Nucleophosmin and cancer. Nature Rev. Cancer 6, 493–505 (2006).

Article  CAS  Google Scholar 

Hernandez, L. Et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am. J. Pathol. 160, 1487–1494 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colleoni, G. W. Et al. ATIC-ALK: A novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am. J. Pathol. 156, 781–789 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, Z. Et al. Inv(2)(p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood 95, 2144–2149 (2000).

CAS  PubMed  Google Scholar 

Touriol, C. Et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 95, 3204–3207 (2000).

CAS  PubMed  Google Scholar 

Tort, F. Et al. Molecular characterization of a new ALK translocation involving moesin (MSN–ALK) in anaplastic large cell lymphoma. Lab. Invest. 81, 419–426 (2001).

Article  CAS  PubMed  Google Scholar 

Ventura, R. A. Et al. Centrosome abnormalities in ALK-positive anaplastic large-cell lymphoma. Leukemia 18, 1910–1911 (2004).

Article  CAS  PubMed  Google Scholar 

Armstrong, F., Lamant, L., Hieblot, C., Delsol, G. & Touriol, C. TPM3–ALK expression induces changes in cytoskeleton organisation and confers higher metastatic capacities than other ALK fusion proteins. Eur. J. Cancer 43, 640–646 (2007).

Article  CAS  PubMed  Google Scholar 

Maes, B. Et al. The NPM–ALK and the ATIC–ALK fusion genes can be detected in non-neoplastic cells. Am. J. Pathol. 158, 2185–2193 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trumper, L., Pfreundschuh, M., Bonin, F. V. & Daus, H. Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br. J. Haematol. 103, 1138–1144 (1998).

Article  CAS  PubMed  Google Scholar 

Basecke, J. Et al. Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood 100, 2267–2268 (2002).

Article  CAS  PubMed  Google Scholar 

Bose, S., Deininger, M., Gora-Tybor, J., Goldman, J. M. & Melo, J. V. The presence of typical and atypical BCR–ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92, 3362–3367 (1998).

CAS  PubMed  Google Scholar 

Graninger, W. B., Seto, M., Boutain, B., Goldman, P. & Korsmeyer, S. J. Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J. Clin. Invest. 80, 1512–1515 (1987).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braig, M. Et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

Article  CAS  PubMed  Google Scholar 

Delsol, G. Et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2;5 translocation. Blood 89, 1483–1490 (1997). First description of the presence of ALK protein in lymphomas that are different from ALCL, that is, large B-cell lymphomas.

CAS  PubMed  Google Scholar 

Kuefer, M. U. Et al. Retrovirus-mediated gene transfer of NPM–ALK causes lymphoid malignancy in mice. Blood 90, 2901–2910 (1997). This paper demonstrates for the first time the direct pathogenetic role for the NPM–ALK fusion tyrosine kinase in human lymphomas by using a retroviral gene transfer mouse model.

CAS  PubMed  Google Scholar 

Lange, K. Et al. Overexpression of NPM-ALK induces different types of malignant lymphomas in IL-9 transgenic mice. Oncogene 22, 517–527 (2003).

Article  CAS  PubMed  Google Scholar 

Chiarle, R. Et al. NPM–ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919–1927 (2003). Development of the first mouse model of ALK-induced lymphomagenesis by targeted expression of human NPM–ALK in T cells.

Article  CAS  PubMed  Google Scholar 

Jager, R. Et al. Mice transgenic for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Res. 25, 3191–3196 (2005).

PubMed  Google Scholar 

Chiarle, R. Et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nature Med. 11, 623–629 (2005). This is the first genetic study that directly shows, through gene ablation, that STAT3 is required for cellular transformation and/or for tumour survival and growth of lymphoid cells expressing NPM–ALK. It also suggests the basis for therapeutic strategies directed against STAT3 in ALCL.

Article  CAS  PubMed  Google Scholar 

Turner, S. D. & Alexander, D. R. What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis? Leukemia 19, 1128–1134 (2005).

Article  CAS  PubMed  Google Scholar 

Turner, S. D., Tooze, R., Maclennan, K. & Alexander, D. R. Vav-promoter regulated oncogenic fusion protein NPM-ALK in transgenic mice causes B-cell lymphomas with hyperactive Jun kinase. Oncogene 22, 7750–7761 (2003).

Article  CAS  PubMed  Google Scholar 

Dirks, W. G. Et al. Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int. J. Cancer 100, 49–56 (2002).

Article  CAS  PubMed  Google Scholar 

Soda, M. Et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007). First description of EML4 – ALK fusion gene in a subset of lung cancers. These cancers are mutually exclusive from those that harbour EGFR mutations.

Article  CAS  PubMed  Google Scholar 

Perez-Pinera, P., Chang, Y., Astudillo, A., Mortimer, J. & Deuel, T. F. Anaplastic lymphoma kinase is expressed in different subtypes of human breast cancer. Biochem. Biophys. Res. Commun. 358, 399–403 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griffin, C. A. Et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59, 2776–2780 (1999). Description of the first known fusion involving ALK in non-haematopoietic tumours.

CAS  PubMed  Google Scholar 

Lawrence, B. Et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am. J. Pathol. 157, 377–384 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coffin, C. M., Hornick, J. L. & Fletcher, C. D. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am. J. Surg. Pathol. 31, 509–520 (2007).

Article  PubMed  Google Scholar 

Ma, Z. Et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 37, 98–105 (2003).

Article  CAS  PubMed  Google Scholar 

Debelenko, L. V. Et al. Identification of CARS–ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab. Invest. 83, 1255–1265 (2003).

Article  CAS  PubMed  Google Scholar 

Lamant, L. Et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am. J. Pathol. 156, 1711–1721 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Powers, C., Aigner, A., Stoica, G. E., McDonnell, K. & Wellstein, A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J. Biol. Chem. 277, 14153–14158 (2002).

Article  CAS  PubMed  Google Scholar 

Mathivet, T., Mazot, P. & Vigny, M. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full-length form of Pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase)? Cell Signal 19, 2434–2443 (2007).

Article  CAS  PubMed  Google Scholar 

Stoica, G. E. Et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem. 277, 35990–35998 (2002).

Article  CAS  PubMed  Google Scholar 

Perez-Pinera, P., Zhang, W., Chang, Y., Vega, J. A. & Deuel, T. F. Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase β/ζ signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J. Biol. Chem. 282, 28683–28690 (2007).

Article  CAS  PubMed  Google Scholar 

Pillay, K., Govender, D. & Chetty, R. ALK protein expression in rhabdomyosarcomas. Histopathology 41, 461–467 (2002).

Article  CAS  PubMed  Google Scholar 

Jazii, F. R. Et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of β tropomyosin expression in esophageal cancer. World J. Gastroenterol. 12, 7104–7112 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du, X. L. Et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J. Mol. Med. 85, 863–875 (2007).

Article  CAS  PubMed  Google Scholar 

Wellmann, A. Et al. The activated anaplastic lymphoma kinase increases cellular proliferation and oncogene up-regulation in rat 1a fibroblasts. FASEB J. 11, 965–972 (1997).

Article  CAS  PubMed  Google Scholar 

Ambrogio, C. Et al. P130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 106, 3907–3916 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai, R. Y., Dieter, P., Peschel, C., Morris, S. W. & Duyster, J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-γ to mediate its mitogenicity. Mol. Cell Biol. 18, 6951–6961 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai, R. Y. Et al. Nucleophosmin–anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96, 4319–4327 (2000). First identification of PI3K and Akt as downstream effectors of the NPM–ALK anti-apoptotic signalling pathway and their contribution to the molecular pathogenesis of ALCL.

CAS  PubMed  Google Scholar 

Zamo, A. Et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21, 1038–1047 (2002). First report showing that JAK3 and STAT3 are constitutively activated in ALK-positive cells and that activation of STAT3 contributes to the growth and resistance to apoptosis of ALK-positive tumour cells.

Article  CAS  PubMed  Google Scholar 

Raetz, E. A. Et al. The nucleophosmin-anaplastic lymphoma kinase fusion protein induces c-Myc expression in pediatric anaplastic large cell lymphomas. Am. J. Pathol. 161, 875–883 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujimoto, J. Et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc. Natl Acad. Sci. USA 93, 4181–4186 (1996). First demonstration of the transforming properties of NPM–ALK in vitro in mouse fibroblasts.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pulford, K., Morris, S. W. & Turturro, F. Anaplastic lymphoma kinase proteins in growth control and cancer. J. Cell Physiol. 199, 330–358 (2004).

Article  CAS  PubMed  Google Scholar 

Voena, C. Et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res. 67, 4278–4286 (2007).

Article  CAS  PubMed  Google Scholar 

Sattler, M. Et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1, 479–492 (2002).

Article  CAS  PubMed  Google Scholar 

Cussac, D. Et al. Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood 103, 1464–1471 (2004).

Article  CAS  PubMed  Google Scholar 

Bacchiocchi, R. Et al. Activation of α-diacylglycerol kinase is critical for the mitogenic properties of anaplastic lymphoma kinase. Blood 106, 2175–2182 (2005).

Article  CAS  PubMed  Google Scholar 

Honorat, J. F., Ragab, A., Lamant, L., Delsol, G. & Ragab-Thomas, J. SHP1 tyrosine phosphatase negatively regulates NPM–ALK tyrosine kinase signaling. Blood 107, 4130–4138 (2006).

Article  CAS  PubMed  Google Scholar 

Han, Y. Et al. Restoration of shp1 expression by 5-aza-2′-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma. Leukemia 20, 1602–1609 (2006).

Article  CAS  PubMed  Google Scholar 

Han, Y. Et al. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM–ALK in ALK+ anaplastic large-cell lymphoma. Blood 108, 2796–2803 (2006).

Article  CAS  PubMed  Google Scholar 

Leventaki, V. Et al. NPM–ALK oncogenic kinase promotes cell cycle progression through activation of JNK/c-Jun signaling in anaplastic large cell lymphoma. Blood 110, 1621–1630 (2007).

Article  CAS  PubMed  Google Scholar 

Ouyang, T. Et al. Identification and characterization of a nuclear interacting partner of anaplastic lymphoma kinase (NIPA). J. Biol. Chem. 278, 30028–30036 (2003).

Article  CAS  PubMed  Google Scholar 

Bassermann, F. Et al. Multisite phosphorylation of nuclear interaction partner of ALK (NIPA) at G2/M involves cyclin B1/Cdk1. J. Biol. Chem. 282, 15965–15972 (2007).

Article  CAS  PubMed  Google Scholar 

Bassermann, F. Et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell 122, 45–57 (2005).

Article  CAS  PubMed  Google Scholar 

Gu, T. L. Et al. NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 103, 4622–4629 (2004).

Article  CAS  PubMed  Google Scholar 

Zhang, Q. Et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunol. 168, 466–474 (2002).

Article  CAS  PubMed  Google Scholar 

Amin, H. M. Et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene 22, 5399–5407 (2003).

Article  CAS  PubMed  Google Scholar 

Marzec, M. Et al. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab. Invest. 85, 1544–1554 (2005).

Article  CAS  PubMed  Google Scholar 

Coluccia, A. M. Et al. Bcl-XL down-regulation suppresses the tumorigenic potential of NPM/ALK in vitro and in vivo. Blood 103, 2787–2794 (2004).

Article  CAS  PubMed  Google Scholar 

Piva, R. Et al. Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J. Clin. Invest. 116, 3171–3182 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nieborowska-Skorska, M. Et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 61, 6517–6523 (2001).

CAS  PubMed  Google Scholar 

Ruchatz, H., Coluccia, A. M., Stano, P., Marchesi, E. & Gambacorti-Passerini, C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp. Hematol. 31, 309–315 (2003).

Article  CAS  PubMed  Google Scholar 

Zhang, Q., Wang, H. Y., Liu, X. & Wasik, M. A. STAT5A is epigenetically silenced by the tyrosine kinase NPM1–ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1–ALK expression. Nature Med. 13, 1341–1348 (2007).

Article  CAS  PubMed  Google Scholar 

Slupianek, A. Et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 61, 2194–2199 (2001).

CAS  PubMed  Google Scholar 

Rassidakis, G. Z. Et al. Inhibition of Akt increases p27Kip1 levels and induces cell cycle arrest in anaplastic large cell lymphoma. Blood 105, 827–829 (2005).

Article  CAS  PubMed  Google Scholar 

Slupianek, A. & Skorski, T. NPM/ALK downregulates p27Kip1 in a PI-3K-dependent manner. Exp. Hematol. 32, 1265–1271 (2004).

Article  CAS  PubMed  Google Scholar 

Marzec, M. Et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 26, 5606–5614 (2007).

Article  CAS  PubMed  Google Scholar 

Vega, F. Et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. 66, 6589–6597 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armstrong, F. Et al. Differential effects of X–ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 23, 6071–6082 (2004).

Article  CAS  PubMed  Google Scholar 

Motegi, A., Fujimoto, J., Kotani, M., Sakuraba, H. & Yamamoto, T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J. Cell Sci. 117, 3319–3329 (2004).

Article  CAS  PubMed  Google Scholar 

Horie, R. Et al. The NPM–ALK oncoprotein abrogates CD30 signaling and constitutive NF-κB activation in anaplastic large cell lymphoma. Cancer Cell 5, 353–364 (2004).

Article  CAS  PubMed  Google Scholar 

Colomba, A. Et al. Activation of Rac1 and the exchange factor Vav3 are involved in NPM–ALK signaling in anaplastic large cell lymphomas. Oncogene (2007).

Bonzheim, I. Et al. Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood 104, 3358–3360 (2004).

Article  CAS  PubMed  Google Scholar 

Kasprzycka, M., Marzec, M., Liu, X., Zhang, Q. & Wasik, M. A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl Acad. Sci. USA 103, 9964–9969 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roncador, G. Et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 19, 2247–2253 (2005).

Article  CAS  PubMed  Google Scholar 

Hsu, F. Y., Johnston, P. B., Burke, K. A. & Zhao, Y. The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin-anaplastic lymphoma kinase-mediated JunB level in a cell type-specific manner. Cancer Res. 66, 9002–9008 (2006). This paper demonstrates for the first time the functional relationship between NPM–ALK and CD30, identifying JUNB as the mediator of NPM–ALK-dependent CD30 transcriptional regulation.

Article  CAS  PubMed  Google Scholar 

Watanabe, M. Et al. JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and Reed–Sternberg cells of Hodgkin lymphoma. Cancer Res. 65, 7628–7634 (2005).

Article  CAS  PubMed  Google Scholar 

Horie, R. Et al. Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodgkin–Reed–Sternberg cells. Oncogene 21, 2493–2503 (2002).

Article  CAS  PubMed  Google Scholar 

Wright, C. W., Rumble, J. M. & Duckett, C. S. CD30 activates both the canonical and alternative NF-κB pathways in anaplastic large cell lymphoma cells. J. Biol. Chem. 282, 10252–10262 (2007).

Article  CAS  PubMed  Google Scholar 

Ohno, H., Nishikori, M., Maesako, Y. & Haga, H. Reappraisal of BCL3 as a molecular marker of anaplastic large cell lymphoma. Int. J. Hematol. 82, 397–405 (2005).

Article  CAS  PubMed  Google Scholar 

Thompson, M. A. Et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum. Pathol. 36, 494–504 (2005).

Article  CAS  PubMed  Google Scholar 

Trempat, P. Et al. Gene expression profiling in anaplastic large cell lymphoma and Hodgkin's disease. Leuk. Lymphoma 45, 2001–2006 (2004).

Article  CAS  PubMed  Google Scholar 

Lamant, L. Et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 109, 2156–2164 (2007).

Article  CAS  PubMed  Google Scholar 

Piccaluga, P. P. Et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J. Clin. Invest. 117, 823–834 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rush, J. Et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnol. 23, 94–101 (2005).

Article  CAS  Google Scholar 

Elenitoba-Johnson, K. S. Et al. Proteomic identification of oncogenic chromosomal translocation partners encoding chimeric anaplastic lymphoma kinase fusion proteins. Proc. Natl Acad. Sci. USA 103, 7402–7407 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crockett, D. K., Lin, Z., Elenitoba-Johnson, K. S. & Lim, M. S. Identification of NPM–ALK interacting proteins by tandem mass spectrometry. Oncogene 23, 2617–2629 (2004).

Article  CAS  PubMed  Google Scholar 

Lim, M. S. & Elenitoba-Johnson, K. S. Mass spectrometry-based proteomic studies of human anaplastic large cell lymphoma. Mol. Cell Proteomics 5, 1787–1798 (2006).

Article  CAS  PubMed  Google Scholar 

Fanale, M. A. & Younes, A. Monoclonal antibodies in the treatment of non-Hodgkin's lymphoma. Drugs 67, 333–350 (2007).

Article  CAS  PubMed  Google Scholar 

Li, R. & Morris, S. W. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med. Res. Rev. 10 August 2007 (doi: 10.1002/med.20109).

Galkin, A. V. Et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM–ALK. Proc. Natl Acad. Sci. USA 104, 270–275 (2007).

Article  CAS  PubMed  Google Scholar 

Wan, W. Et al. Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood 107, 1617–1623 (2006).

Article  CAS  PubMed  Google Scholar 

Zou, H. Y. Et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007). This paper, and the preceding two, shows the development of the first small molecules with selective ALK inhibitory activity, which result in G1 cell-cycle arrest and inactivation of ERK1 and ERK2, STAT3 and Akt signaling pathways. These results suggest a therapeutic application for ALK-positive ALCL and possibly other solid and haematological tumours in which ALK activation is implicated in their pathogenesis.

Article  CAS  PubMed  Google Scholar 

Piva, R. Et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood 107, 689–697 (2006). Proof of principle that ALK is a viable target for therapeutic intervention and that its inactivation might be a pivotal approach for the treatment of ALK lymphomas.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ait-Tahar, K. Et al. B and CTL responses to the ALK protein in patients with ALK-positive ALCL. Int. J. Cancer 118, 688–695 (2006).

Article  CAS  PubMed  Google Scholar 

Passoni, L. Et al. In vivo T-cell immune response against anaplastic lymphoma kinase in patients with anaplastic large cell lymphomas. Haematologica 91, 48–55 (2006).

CAS  PubMed  Google Scholar 

Pulford, K. Et al. Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma. Blood 96, 1605–1607 (2000).

CAS  PubMed  Google Scholar 

Lollini, P. L., Cavallo, F., Nanni, P. & Forni, G. Vaccines for tumour prevention. Nature Rev. Cancer 6, 204–216 (2006).

Article  CAS  Google Scholar 

Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8, 173–184 (2007).

Article  CAS  PubMed  Google Scholar 

Englund, C. Et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425, 512–516 (2003).

Article  CAS  PubMed  Google Scholar 

Lee, H. H., Norris, A., Weiss, J. B. & Frasch, M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425, 507–512 (2003). This paper and the preceding one are the first description of a physiological role of an ALK homologue in Drosophila melanogaster.

Article  CAS  PubMed  Google Scholar 

Bazigou, E. Et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 128, 961–975 (2007).

Article  CAS  PubMed  Google Scholar 

Liao, E. H., Hung., W., Abrams, B. & Zhen, M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430, 345–350 (2004).

Article  CAS  PubMed  Google Scholar 

Vernersson, E. Et al. Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr. Patterns 6, 448–461 (2006).

Article  CAS  PubMed  Google Scholar 

Morris, S. W. Et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14, 2175–2188 (1997).

Article  CAS  PubMed  Google Scholar 

Iwahara, T. Et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439–449 (1997).

Article  CAS  PubMed  Google Scholar 

Souttou, B., Carvalho, N. B., Raulais, D. & Vigny, M. Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 276, 9526–9531 (2001).

Article  CAS  PubMed  Google Scholar 

Piccinini, G. Et al. A ligand-inducible epidermal growth factor receptor/anaplastic lymphoma kinase chimera promotes mitogenesis and transforming properties in 3T3 cells. J. Biol. Chem. 277, 22231–22239 (2002).

Article  CAS  PubMed  Google Scholar 

Bilsland, J. G. Et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology 9 May 2007 (doi: 10.1038/sj.Npp.1301446).